Hardwear.io Virtual Con 2020

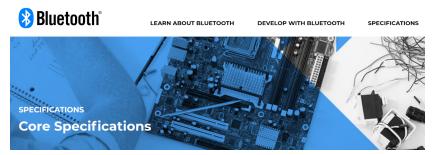
From the Bluetooth Standard to Standard-Compliant 0-days

Daniele Antonioli and Mathias Payer

Who We Are

- Daniele Antonioli
 - Security researcher, Postdoc at EPFL
 - @francozappa
 - More: https://francozappa.github.io

- Mathias Payer
 - Security researcher, Professor at EPFL
 - ▶ @gannimo
 - More: https://nebelwelt.net/


- We are researchers in the HexHive group
 - System security topics
 - More: https://hexhive.epfl.ch/

- Bluetooth Standard
 - Complex document (Bluetooth Core v5.2, 3.256 pages)
 - Specifies Bluetooth Classic (BT) and Bluetooth Low Energy (BLE)

https://www.bluetooth.com/specifications/bluetooth-core-specification/

- Standard-compliant 0-day (security vulnerability)
 - Unknown and/or unaddressed
 - Agnostic to hardware, and software implementation details
 - Very effective (1 vuln = all standard-compliant devices are exploitable)
 - Difficult to patch (firmware upgrades, device recall)

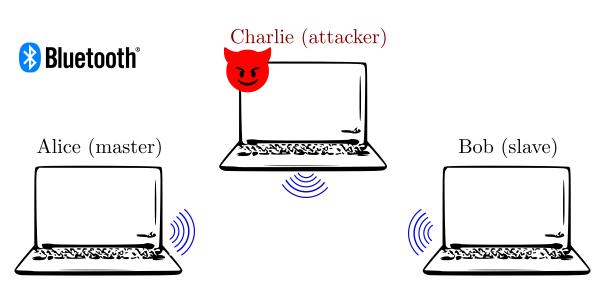
Key Negotiation of Bluetooth (KNOB) Attacks

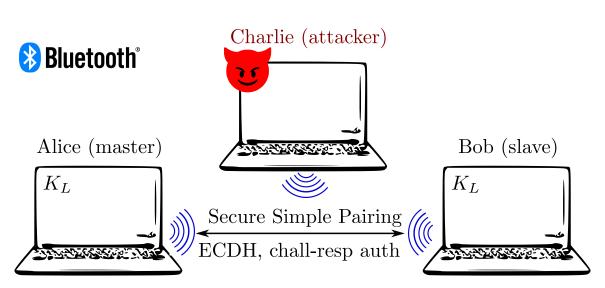
- KNOB attacks on Bluetooth Low Energy (BLE) and Bluetooth Classic (BT)
 - Exploiting standard-compliant 0-days in Bluetooth key negotiation

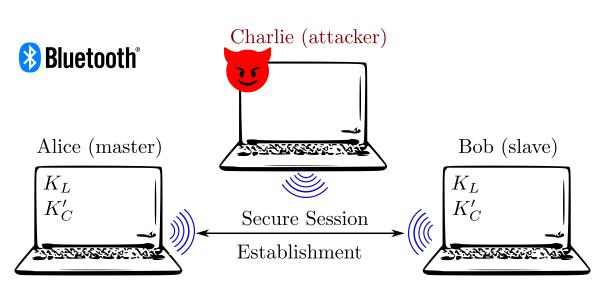
- Related work (cc: Nils Tippenhauer and Kasper Rasmussen)
 - "The KNOB is Broken: Exploiting Low Entropy in the Encryption Key Negotiation Of Bluetooth BR/EDR" [SEC19]
 - "Key Negotiation Downgrade Attacks on Bluetooth and Bluetooth Low Energy" [TOPS20]

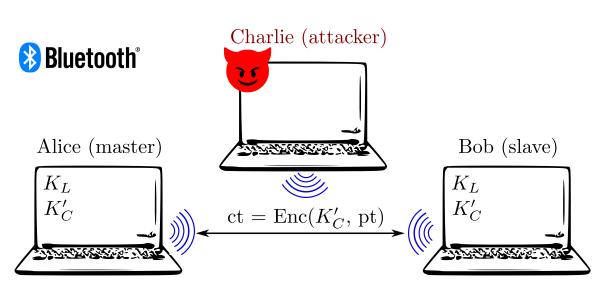
Bluetooth Security

• Pairing

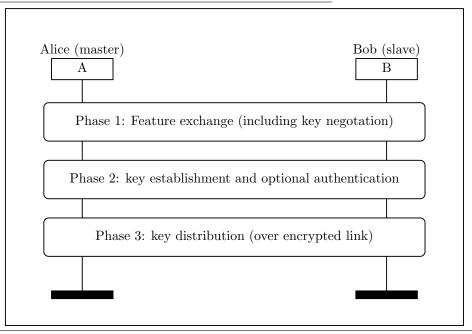

Establish a long term key (SSP based on ECDH)

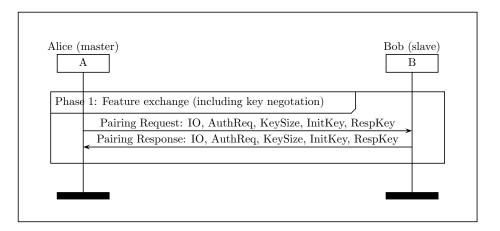

Secure session establishment


Establish a session key (derived from pairing key)


- Security mechanisms
 - Association: protect against man-in-the-middle attacks
 - Key negotiation: negotiate a key with variable entropy (strength)

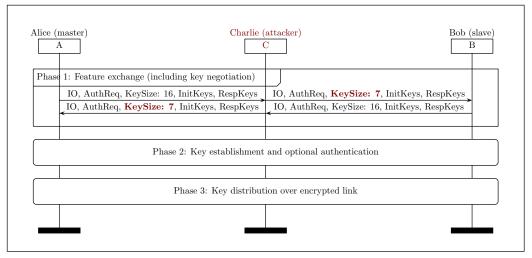
7





KNOB attack on BLE

BLE Pairing: Overview



BLE Pairing: Key Negotiation

- Key negotiation issues (standard-compliant 0-days)
 - KeySize negotiation is not protected, i.e. no integrity, no encryption
 - KeySize values between 7 bytes and 16 bytes

KNOB Attack on BLE Feature Exchange

- KNOB attack on BLE pairing
 - Attacker downgrades KeySize to 7 bytes
 - Victims' pairing and session keys have 7 bytes of entropy
 - Attacker brute-forces the low-entropy keys

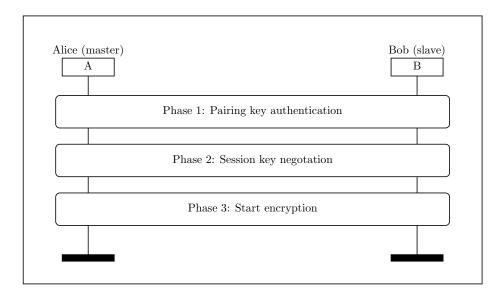
Implementation of KNOB Attack on BLE

- Security Manager Protocol (SMP) manipulation
 - Implemented in the BLE host (OS)

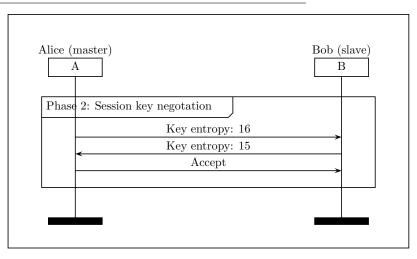
- Custom Linux kernel
 - net/bluetooth/smp.c: SMP_DEV(hdev) ->max_key_size = 7

- Custom user-space BLE stack
 - Based on PyBT (https://github.com/mikeryan/PyBT)
 - That is based on scapy (https://scapy.net)

Evaluation of BLE KNOB Attack (19 devices, from Oct 2019)

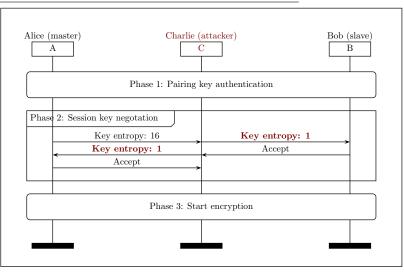

Device	OS (BLE Host)	Role	LTK Entropy
BLE Secure Connections (Blue	$etooth \ge 4.2$)		
Garmin Vivoactive 3	Proprietary	Peripheral	7 bytes
Google Pixel 2	Android	Central	7 bytes
LG K40	Android	Central	7 bytes
Samsung Gear S3	Tizen OS	Peripheral	7 bytes
Thinkpad X1 3rd	Linux	Central	7 bytes
Thinkpad X1 6rd	Linux	Central	7 bytes
TI CC1352R	TI RTOS	Central	7 bytes
BLE legacy security (Bluetoot	th 4.0 and 4.1)		
Comet Blue thermostat	Unknown	Peripheral	7 bytes
EDIFIER R1280DB speaker	Unknown	Peripheral	7 bytes
Fitbit Charge 2	Fitbit OS	Peripheral	7 bytes
ID115 HR Plus	Unknown	Peripheral	7 bytes
LG Nexus 5	Android	Central	7 bytes
Logitech MX Anywhere 2S	Nordic	Peripheral	7 bytes
Motorola G3	Android	Central	7 bytes
Samsung Galaxy J5	Android	Central	7 bytes
Samsung TV UE48J6250	Tizen OS	Peripheral	7 bytes
Xiaomi Mi band	Proprietary	Peripheral	7 bytes
Xiaomi Mi band 2 (x2)	Proprietary	Peripheral	7 bytes

Daniele Antonioli (@francozappa) Mathias Payer (@gannimo) From the Bluetooth Standard to Standard-Compliant 0-days


KNOB attack on BT

- Alice and Bob
 - Securely paired over BT in absence of Charlie
 - Share a strong pairing key (16 bytes of entropy)

BT Session Establishment: Overview



BT Session Establishment: Session Key Negotiation

- Key negotiation issues (standard-compliant 0-days)
 - ► Key entropy negotiation is not protected, i.e. no integrity, no encryption
 - Key entropy values between 1 byte and 16 bytes

KNOB Attack on BT Session Key Negotiation

- KNOB attack on BT secure session establishment
 - Attacker downgrades key entropy to 1 bytes
 - Attacker brute-forces the low-entropy key

Implementation of KNOB Attack on BT

- Link Manager Protocol (LMP) manipulation
 - Implemented in the BT controller (firmware)

- Custom version of internalblue
 - RE Nexus 5 BT firmware
 - Write ARM patches for LMP
 - Patch Nexus 5 at runtime

Evaluation of BT KNOB Attack (38 devices, from Jun 2019)

Chip	Device(s)	K'_C Entropy
Bluetooth version 5.0		
Apple A1865	iPhone X	1 byte
Apple 339S00428	MacBookPro 2018	1 byte
Mediatek MT6762	LG K40	3 bytes
Snapdragon 660	Xiaomi MI A2	1 byte
Snapdragon 835	Pixel 2, OnePlus 5	1 byte
Snapdragon 845	Galaxy S9	1 byte
Bluetooth version 4.2		
Apple 339S00045	iPad Pro 2	1 byte
BCM43438	RPi 3B, RPi 3B+	1 byte
BCM43602	iMac MMQA2LL/A	1 byte
CSR 11393	Sennheiser PXC 550	1 byte
CSR 11836	Bose SoundLink revolve	1 byte
CSR 12942	Sony WH-100XM3	1 byte
Exynos 7570	Galaxy J3 2017	1 byte
Intel 7265	Thinkpad X1 3rd, Dell Latitude E7250	1 byte
Intel 8260	HP ProBook 430 G3	1 byte
Intel 8265	Thinkpad X1 6th	1 byte
Snapdragon 625	Xiaomi Mi Max 2	1 byte

Evaluation of BT KNOB Attack (38 devices, from Jun 2019)

Bluetooth version 4.1		
BCM4339 (CYW4339)	Nexus 5, iPhone 6	1 byte
Snapdragon 210	LG K4	1 byte
Snapdragon 410	Motorola G3, Galaxy J5	1 byte
Bluetooth version ≤ 4.0		
Apple W1	AirPods	7 bytes
BCM20730	Thinkpad 41U5008	1 byte
BCM4329B1	iPad MC349LL	1 byte
Broadcom 8721	Anker A7721, Thinkpad KT-1255	1 byte
Broadcom 20702	MacBookAir Mid 2012	1 byte
CSR 6530	Plantronics BackBeat 903+	1 byte
CSR 8648	Philips SHB7250+	1 byte
Exynos 3475	Galaxy J3 2016	1 byte
Intel Centrino 6205	Thinkpad X230	1 byte
Snapdragon 200	Lumia 530	1 byte
Snapdragon 615	Galaxy A7	1 byte
Snapdragon 800	LG G2	1 byte

KNOB Attacks Countermeasures

Our countermeasures for BT and BLE

- Legacy-compliant
 - Set minimum entropy value to 16 bytes
 - Enforce key entropy of 16 bytes

- Non legacy-compliant
 - Integrity protect key negotiation
 - Remove entropy negotiation feature

Bluetooth SIG amended the standard (2019-08-13)

- Erratum 11838: Encryption Key Size Updates
 - ▶ BT minimum entropy value now is 7 bytes, BLE stays the same
 - Mandatory for Bluetooth versions: 4.2, 5.0, 5.1, 5.2

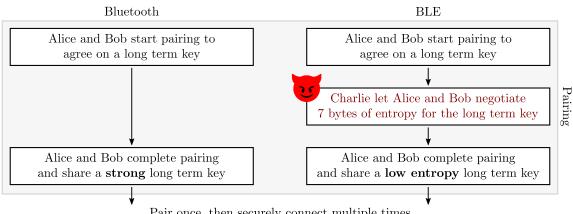
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=470741

KNOB on BT: Apple mitigation

https://twitter.com/seemoolab/status/1169363042548760577/photo/1

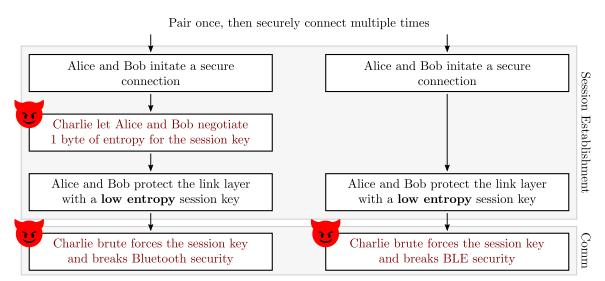
- Notify the user if key entropy is lower than 7 bytes
 - Accept any entropy value if user presses Allow (once)
- · Shifting responsibilities to users is bad!
 - Users do not care, accidentally press, are tricked to press

KNOB on BT: Google and Linux mitigation



BlueZ Official Linux Bluetooth protocol stack

- OS patch
 - Checks entropy and terminates the session if entropy is less than 7 bytes
 - Uses HCI Read Encryption Key Size command
- Shifting responsibilities to the OS can still be bad!
 - Malicious OS can still negotiate 1 byte of entropy


Conclusion

KNOB BT vs. BLE: Pairing

Pair once, then securely connect multiple times

KNOB BT vs. BLE: Secure Session Establishment

• 7 bytes of entropy for a key is too low (comparable to DES)

• BT and BLE key negotiations remain un-protected

• Entropy negotiation does not provide runtime benefits (key size stays constant)

• Most of the BT devices are still vulnerable to the 1 byte downgrade

From the Bluetooth Standard to Standard-Compliant 0-days

- Bluetooth Standard
 - Specifies Bluetooth Classic (BT) and Bluetooth Low Energy (BLE)

- Standard-compliant 0-days (vulnerabilities)
 - Very effective and difficult to patch

- Key Negotiation of Bluetooth (KNOB) attacks on BT and BLE
 - More info at https://knobattack.com
 - Try it yourself at https://github.com/francozappa/knob